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Abstract

This work describes an experimental study and a numerical simulation of residence time distributions (RTD) in a
spatially chaotic three-dimensional ¯ow. The experimental system is made up of a succession of bends in which
centrifugal force generates a pair of streamwise Dean roll-cells. Fluid particle trajectories become chaotic through

geometrical perturbation obtained by rotating the curvature plane of each bend 2908 with respect to the
neighbouring ones. Di�erent numbers of bends, ranging from 3 to 33, were tested. RTD is experimentally obtained
by using a two-measurement-point conductimetric method, the concentration of the injected tracer being determined

both at the inlet and at the outlet of the chaotic mixer. The experimental RTD is modelled by a plug ¯ow with axial
dispersion volume exchanging mass with a stagnant zone. RTD experiments were conducted for Reynolds numbers
between 30 and 13,000. PeÂ clet number based on the diameter of the pipe PeD � �WD

Dax
� increases with Reynolds

number, whatever the number of bends in the system. This reduction in axial dispersion is due to the secondary

Dean ¯ow and the chaotic trajectories. Globally, the ¯owing fraction increases with Reynolds number, whatever the
number of bends, to reach a maximum value between 90 and 100%. For Reynolds numbers between 50 and 200,
the ¯owing fraction increases with the number of bends. The stagnant zone models ¯uid particles located close to

the tube wall. The pathlines become progressively chaotic in small zones in the cross section and then spread across
the ¯ow as the number of bends is increased, allowing more trapped particles to move towards the tube centre. In
order to characterise more completely the e�ciency of the device, a criterion is proposed that takes into account

both the mixing characteristics and the pressure drop. The RTD for low Reynolds numbers has also been obtained
numerically using a ¯ow model based on Dean's asymptotic perturbation solutions of the mean ¯ow in a curved
pipe. At the end of each bend, the velocity ®eld is rotated by 2908 before entering the next bend. The RTD is

calculated by following the trajectories of 250,000 `numerical' particles along the device. Numerical results are in
good agreement with experiments in the same Reynolds number range. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Techniques commonly used to enhance mixing often

involve the generation of turbulent ¯ow. In some

cases, however, ¯uids with long molecular chains can
be damaged by high shear stresses, and also energy is

lost by turbulent agitation. In the regular laminar

regime, mixing is induced mainly by molecular di�u-
sion. The idea of generating a spatial (Lagrangian)

chaotic behaviour from a deterministic ¯ow by simple

geometrical perturbations has attracted much attention

in recent years [1±3], in large part because of its poten-
tial application in mixing devices [4±7].

The geometrical perturbation induces complex three-

dimensional chaotic trajectories in which particles can

visit a large number of positions in physical space. To

generate chaotic ¯ow paths, we used the same tech-

nique as Peerhossaini et al. [8], which exploits the sec-

ondary ¯ow patterns, usually known as Dean roll-cells

[3]. The secondary ¯ow is a pair of counter-rotating

vortices projected in the duct cross-section [9,10]. In a

curved pipe, the secondary ¯ow pattern is closely

linked to the channel curvature. By shifting the plane

of curvature from one bend to the next, one can

induce a class of trajectories in one bend, then deform

it to another type in the next bend, and so on. Very

Nomenclature

A Dimensionless number, A �
ÿ R 2

m �W

@P
Rc@ y

C Concentration of an injected
tracer (mol mÿ3)

C � Concentration of an injected
tracer in the stagnant zone
(mol mÿ3)

C1�t� Concentration of an injected
tracer at the inlet (mol mÿ3)

C2�t� Concentration of an injected

tracer at the outlet (mol
mÿ3)

C 01�t� Normalised concentration of
an injected tracer at the

inlet
C 02�t� Normalised concentration of

an injected tracer at the out-

let
Cf Friction factor
Cr Mixing criterion, Cr � n

DaxCf

D Tube diameter (m)
Dax Axial dispersion coe�cient

(m2 sÿ1)
Dn Dean number, Dn � Re

�����
D
Rc

q
RMS Root mean square error (%)
f Fraction of volume sub-

jected to ¯ow
F�s�, F1�s�, F2�s�, F3�s� Transfer functions
G Dimensionless group, G �

KL
�W

K Mass transfer coe�cient
between the ¯owing volume
and the stagnant region
(sÿ1)

L Total length of the system
(m)

P Pressure (Pa)

PeD PeÂ clet number based on the
diameter of the system,
PeD � �WD

Dax

PeL PeÂ clet number based on the
total length of the system,
PeL � �WL

Dax

r Local radial coordinate (m)
R Tube radius (m)
Rc Mean curvature radius (m)

Re Reynolds number, Re � �WD
n

t Time (s)
ts Mean residence time (s)
u, v Secondary velocity com-

ponents (m sÿ1)
w Axial velocity (m sÿ1)
�W Average axial velocity (m

sÿ1)
x, y, y and r, j, y Toroidal local coordinate

systems

z Streamwise coordinate (m)

Greek symbols

a Angle between two suc-
cessive bends (8)

b Dimensionless number, b �
Pe 2L�4sgPeLts

y, j Local angular coordinates
(rad)

g Dimensionless number, g �
f� G�1ÿf�

tss�1ÿf��G
m Dynamic viscosity (Pa s)
n Kinematic viscosity, (m2

sÿ1)
r Fluid density (kg mÿ3)
c Stream function
o Pulsation of the Fourier

series (rad sÿ1)
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complex ¯ow paths can be produced in this way, and a

¯uid particle undergoing such ¯ows follows a chaotic

path. Such chaotic cross-sectional movement has been

found to enhance the advection of passive scalars and
therefore to improve the e�ciency of the wall heat

transfer, leading to homogenisation in the ¯uid volume

[8,11] and thus better mixing.

A commonly used diagnostic for continuous mixing

is the residence time distribution (RTD), which lets

one obtain a global dispersion coe�cient by using an

appropriate model. In previous work [7], we compared

RTD in helically coiled and chaotic twisted pipe for

Reynolds numbers between 800 and 13,000 and for

di�erent numbers of bends. In order to investigate dis-

persion in the two experimental arrangements, we used

the axial dispersion plug ¯ow model. For Reynolds
numbers larger than 2500, axial dispersion in the

chaotic system is more than 20% less than in a heli-

cally coiled tube having the same number of bends.

The decrease in axial dispersion is due to the gener-

ation of chaotic trajectories, which also contribute

to an increase in transverse dispersion. For smaller

Fig. 1. Schematic diagram of the ¯ow loop.
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Reynolds numbers, the agreement between the plug

¯ow with axial dispersion model and the experimental
RTD curves was not satisfactory, a disagreement pri-

marily attributed to the long tails of the experimental
RTDs.

In the previous work [7], water was used as the
working ¯uid for Reynolds numbers between 800 and

13,000. In the present study, we use two saccharose
solutions so that the Reynolds number varies between

30 and 1700. The objective of this study is to charac-
terise experimentally the mixing properties in the chao-

tic system for this range of Reynolds numbers. For

smaller Reynolds numbers (Re < 100), a numerical

simulation of the RTD is also presented in both a heli-
cally coiled and a chaotic system. The mixing charac-

teristics in both con®gurations will be compared, as
well as numerical results and experimental data.

The experimental apparatus and methods are
described in the next section. The third section covers

the modelling of the experimental RTD and analysis
of the experimental data, while the fourth section deals

with the results of the numerical simulation of RTD in
the same geometry. Numerical and experimental data

are compared in the ®nal part of the paper.

Fig. 2. The two systems under study: (a) helically coiled tube; (b) chaotic con®guration.
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2. Experimental apparatus and methods

2.1. Flow loop and working ¯uid

The experimental ¯ow loop, previously described by

Castelain et al. [7], is schematically depicted in Fig. 1.
The setup consists of an overhead reservoir of volume
about 0.2 m3, from which the working liquid is circu-
lated by means of a centrifugal pump. The ¯ow rate is

measured by three calibrated ¯owmeters, connected in
parallel, in the range 0.03±0.84 m3 hÿ1 with an accu-
racy of 21.5% over the whole ¯ow rate range. Before

entering the test section, i.e. the chaotic or helically
coiled system (see Fig. 1), the liquid ¯ows through a
straight pipe 3 m long, more than 65 times the inner

diameter of the curved tubes. The presence of this pipe
ensures an axial fully developed ¯ow ®eld at the inlet
of the test section in the range of Reynolds numbers

under study (30±13,000).
In the present study, as well as in the previous work

[7], the helical and chaotic mixers are both made of 33
identical bends. Each bend consists of a 908 curved

stainless-steel tube of circular cross-section, the inner
and outer radii of which are 23 and 25 mm, respect-
ively. The mean radius of curvature of the bends is

126.5 mm, which yields a mean curvature ratio of 0.18.
The bends can be assembled so as either to form a
helically coiled pipe or to generate chaotic ¯uid par-

ticle paths. The complete helical system consists of 33

bends, connected by 16 straight sections of 55-mm

lengths (Fig. 2(a)). The chaotic twisted pipe device is

also made of 33 bends and 11 straight sections of 80-

mm length (Fig. 2(b)). The latter geometry is obtained

by shifting the plane of curvature of each bend by a

908 angle with respect to the previous one. Both com-

plete helically coiled and chaotic twisted pipe systems

have the same overall length, about 10 m. Di�erent

con®gurations, made up of 3 to 33 bends, were tested

in order to investigate their e�ect on the mixing prop-

erties in both geometries (see Table 1). In our previous

work [7], water was used as the working ¯uid for Rey-

nolds numbers ranging between 800 and 13,000. In the

present study, we used two saccharose solutions, allow-

ing a Reynolds number variation between 30 and 1700.

The geometrical characteristics of the con®gurations

studied and the hydrodynamical parameters are sum-

marised in Table 1. During the RTD experiments, the

working ¯uid is not recycled so as to avoid any modi®-

cation of its physical properties, but is instead stored

in a second reservoir, as shown in Fig. 1. The pressure

drops induced by both the twisted pipe device and heli-

cally coiled tube were measured using small pressure

tabs mounted ¯ush to the pipe wall at the inlet and

outlet of the system and connected to an inclined U-

di�erential manometer.

Table 1

Geometrical and hydrodynamical parameters of the studied con®gurations

Lengths of the studied con®gurations

Number of bends Curved length (m) Straight length (m) Total length (m)

Hellically coiled system 3 0.596 0.295 0.891

9 1.788 0.935 2.723

15 2.981 1.585 4.566

21 4.173 2.230 6.403

27 5.365 2.875 8.240

33 6.557 3.521 10.078

Chaotic system 3 0.596 0.320 0.916

6 1.192 0.640 1.832

9 1.788 0.960 2.748

15 2.981 1.600 4.581

21 4.173 2.240 6.413

27 5.365 2.880 8.245

33 6.557 3.520 10.078

Experimental domain

System Number of bends Viscosity of the liquid (Pa s) Re range

Castelain et al. [7] Helically coiled 3, 9, 15, 21, 27, 33 10ÿ3 (water) 800±13,000

Chaotic 3, 9, 15, 21, 27, 33 10ÿ3 (water) 800±13,000

Present work Chaotic 3, 6, 9, 33 0.102±0.128 (saccharose) 30±200

Chaotic 3, 6, 33 0.012 (saccharose) 400±1700
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2.2. Experimental determination of the residence time
distribution

The RTD of a passive tracer in both the helically
coiled and chaotic twisted pipe ¯ows was obtained ex-
perimentally using a conductimetric method with two

measurement points [7,12,13]. The concentration of an
injected tracer was sampled, as a function of time, at
both the inlet and the outlet of the geometry under

study. To ensure uniform tracer concentration at the
entrance of the twisted pipe, the tracer injection was
followed by a seven-element Sulzer SMX static mixer,

which extends the time distribution of the tracer at the
inlet and thus allows a correct sampling of the signal

coming from the injection by means of a syringe.
Depending on the Reynolds numbers range under
study (see Table 1), pure water or saccharose solutions

were used as working ¯uids, the tracer being a solution
of sodium hydroxide (NaOH). When water is the
working liquid, between 0.5 and 2 cm3 of 0.25 mol lÿ1

NaOH solution were injected, whereas about 2 cm3 of
1 mol lÿ1 NaOH solution were injected when sacchar-
ose solutions were involved. This passive tracer was

detected using two specially designed conductimetric
cells, made up of two semicylindrical nickel plates insu-
lated from each other and having the same diameter as

the twisted pipe systems. These self-made cells ensure
sampling of the whole volume of the injected tracer.

Each sensor is connected to a variable-frequency con-
ductimeter (TACUSSEL CD 810). The frequency of
the applied alternating current between the two electro-

des of the conductimetric cells was ®xed at 1 kHz in
order to ensure a linear relationship between the con-
ductivity and the concentration of the tracer in the cor-

responding range (0 R C R 1 mol lÿ1). The
concentration curves at the inlet, C1�t�, and at the out-
let, C2�t�, of the geometry under study are sampled at

a frequency varying between 7 and 60 Hz (depending
on the ¯ow rate) by means of a data-acquisition device
(AOIP SA 32) connected to a personal computer for

data processing (see Fig. 1).
The use of a two-measurement-point method instead

of the more common step or pulse injection modes
[14], while making the determination of the parameters
of any ¯ow model more intricate [15,16], avoids the ex-

perimental di�culties involved in obtaining a perfect
pulse or step injection. It also allows easy veri®cation
of the tracer balance by integration and comparison of

the two experimental signals, C1�t� and C2�t�: In all ex-
perimental data discussed here, the tracer balance is
correct to less than 10%.

As mentioned above, after the injection of the tracer
(NaOH), the liquid was not recycled in the ¯ow loop,

but was instead stored in a secondary reservoir (Fig. 1),
so as to avoid modifying the conductivity of the basic
feed. The small quantities of injected tracer ensure that

the physical properties of the working solutions remain
unchanged throughout the experiments.

3. Modeling of RTD and experimental results

3.1. Choice of the model and modelling

In a previous work, Castelain et al. [7] used the axial
dispersed plug ¯ow model to characterise RTD curves
of a liquid ¯owing through the same devices used here

(see Fig. 2) for high Reynolds numbers
�800RReR13,000; see Table 1). For this Reynolds
numbers range, the ¯ow in the chaotic twisted pipe

arrangement can be considered as fully chaotic in the
whole section of the apparatus [7,2]. In this case, the
dispersed plug ¯ow model has been found suitable for
correct prediction of the RTD of the liquid, both in

the chaotic and in the helically coiled systems [7], con-
®rming previous experimental work dedicated to this
last con®guration [17,18,4]. Here, the experimental

RTD curves obtained in the chaotic device and in the
helically coiled tube were also analysed using the plug
¯ow with axial dispersion model. The simplicity of this

model allows it to be used for chemical engineering de-
sign in various geometries, such as axial ¯ow in
straight pipes [19]; Couette ¯ow [20], Taylor-Couette

¯ows [21] or annular swirling decaying ¯ow induced by
means of a tangential inlet [12,13]. In the dispersed
plug ¯ow model, a dispersion in the main ¯ow direc-
tion, due to local velocity ¯uctuations, is superimposed

on the ideal plug ¯ow. These velocity ¯uctuations are
introduced through an axial, or longitudinal, dis-
persion coe�cient, Dax, in a relationship analogous to

Fick's di�usion law. For low ¯ow rates, Dax accounts
for the combined dispersive e�ects coming from mol-
ecular dispersion and convective contribution [19]. For

¯ows of forced convection type, like those investigated
here, the e�ects of molecular di�usion can be assumed
negligible. The concentration, C, of a passive tracer
uniformly injected within the inlet cross-section of the

device is given as a function of time, t, and streamwise
coordinate, z, by:

@C

@ t
� Dax

@ 2C

@z 2
ÿ �W

@C

@z
�1�

where �W is the mean axial ¯ow rate. In relation (1),
the concentration of the sampling species, C, is
assumed constant within each cross-section of the ¯ow

®eld (no radial dispersion) and the axial dispersion
coe�cient, Dax, is considered independent of both the
tracer concentration and the longitudinal coordinate,

z. Obviously, the last assumption is not completely ful-
®lled in our chaotic con®guration, for which Castelain
et al. [7] have shown that Dax depends on the number
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of bends constituting the device, and thus evolves
along the ¯ow path. Indeed, the ¯ow characteristics

are not fully established as soon as the ¯uid enters the
system. For instance, in the helically coiled tube, the
Dean roll-cells [9,10] are not well developed in the ®rst

bends of the apparatus. Furthermore, in the ®rst few
elbows of the chaotic twisted pipe ¯ow, chaotic ¯ow
regions can coexist with regular zones [2,22], which

obviously implies an evolution of the axial dispersion
coe�cient along the ¯ow path. Thus Dax must be con-
sidered as a mean value, which is still appropriate for

global characterisation of the dispersive e�ects of a
given ¯ow.
The plug ¯ow with axial dispersion model is charac-

terised by two parameters, the mean residence time of

the ¯uid in the system, ts, and the PeÂ clet number based
on the total length, L, between the two sensors,
PeL � �WL=Dax; these are determined using curve-®t-

ting in the time domain [23,15]. This appears to be the
most accurate way to identify the di�erent parameters
involved in a given ¯ow model from measurement of

tracer input and response signals [16]. This method is
based on comparison of the experimental concen-
tration outlet curve and that calculated, in the time

domain, using the inlet curve concentration signal and
the transfer function of the ¯ow model. The inlet,
C1�t�, and outlet, C2�t�, concentration curves are ®rst
normalised to ensure exact satisfaction of the tracer

balance, and then expressed in terms of Fourier series
[23,15,13,24]. The resolution of Eq. (1), using the
Laplace transform, allows the determination of the

transfer function F1�s� � C2calc�s�=C 01�s� between
Laplace transforms of the normalised calculated outlet
signal and the experimental inlet curve.

For the dispersed plug ¯ow model, when axial dis-
persion extends before the inlet detector and after the
outlet detector (open±open plug ¯ow model with axial
dispersion), F1�s� is given by [25]:

F1�s� � exp

(
PeL

2

"
1ÿ

�
1� 4s

PeL

ts

�1=2
#)

�2�

The predicted temporal normalised response concen-
tration curve, C 02calc�t�, can thus be calculated using the

de®nition of the transfer function in the Fourier
domain and the normalised inlet signal, C 01�t�:

F1�io� �

� 2T

0

C 02calc�t�exp� ÿ iot� dt� 2T

0

C 01�t�exp� ÿ iot� dt
�3�

o being the pulsation of the Fourier series and 2T the

time in which the tail of the response signal, C 02�t�,
vanishes.The experimental, C 02�t�, and predicted,
C 02calc�t�, response curves are compared by evaluating

the root mean square error, RMS, between these two
signals [15]:

RMS �

26664
� 2T

0

�
C 02�t� ÿ C2calc�t�

	 2
dt� 2T

0

�
C 02�t�

	 2
dt

37775 �4�

RMS, which is a function of the two parameters, ts
and PeL, of the plug ¯ow with axial dispersion model,

is minimised using the Rosenbroock optimisation al-
gorithm [26]. As recognised by Rangaiah and Krish-
naswamy [27], PeL and ts are determined jointly and
are assumed to be correctly optimised when RMS

remains less than 10%.
As previously observed by Castelain et al. [7], for

Reynolds numbers less than about 2500, the agreement

between the plug ¯ow with axial dispersion model and
the experimental residence time distributions in the
chaotic curved-pipe arrangement is not as satisfactory

as it is for Reynolds numbers larger than 2500: the
root mean square error between the experimental and
modelled outlet signals, RMS in Eq. (4), is often larger
than 10%. This is mainly due to the tails on the exper-

imental RTD, which cannot be correctly predicted
using the dispersed plug ¯ow model. These tails were
also observed by Jones and Young [28] in a theoretical

investigation of dispersion of a passive scalar in steady
viscous ¯ow through a twisted pipe subject to chaotic
advection. The ¯ow can thus be considered as a mixed

regime in which islands of integrable trajectories co-
exist within irregular regions [2,28]. The trajectories of
¯uid particles do not instantaneously become fully

chaotic as the ¯uid enters the twisted pipe system. At
the inlet of the apparatus, small regions where the ¯ow
becomes less and less regular appear; these spread
along the ¯ow path and ®nally cover the whole cross-

section. The transition between these two asymptotic
¯ow regimes is characterised by the coexistence of
chaotic zones with regular parts, and this competition

induces tails on the RTD curves. Thus, for Reynolds
numbers less than about 2500, the experimental RTD
was modelled using a plug ¯ow with axial dispersion

part that exchanges mass with a stagnant region. This
model was ®rst used by Coats and Smith [29] to study
the ¯ow in porous media including dead-end pore
volumes, which cannot be predicted by the single plug

¯ow with longitudinal dispersion model since it cannot
reproduce the asymmetry of the response signal to a
tracer injection. The dispersed plug ¯ow model ex-

changing mass with a stagnant volume has also been
successfully used by Piva et al. [30] to investigate a
Taylor±Couette±Poiseuille ¯ow in which the injected

passive tracer remains partly trapped within the Taylor
counter-rotating vortices, while the remaining tracer
¯ows along the separatrices of the vortices without

C. Castelain et al. / Int. J. Heat Mass Transfer 43 (2000) 3687±3700 3693



penetrating them. In such a ¯ow, Piva et al. [30] have
shown that the stagnant zone can represent 30% of

the total volume of the apparatus. More recently,
Legentilhomme and Legrand [12] also employed this
model in swirling annular or tubular decaying ¯ow in

which a large recirculation bubble, quite stagnant in
part of the cell, appears. The dispersed plug ¯ow
model exchanging mass with a stagnant volume is

expressed by the following two di�erential equations
[29]:

Dax
@ 2C

@z 2
ÿ �W

@C

@z
� f

@C

@ t
� �1ÿ f�@C

�

@ t
�5�

�1ÿ f�@C
�

@ t
� K�Cÿ C � � �6�

where C � is the tracer concentration in the stagnant
zone, f the fraction of the volume subjected to plug
¯ow with axial dispersion, and K the mass transfer

coe�cient between the ¯owing volume and the stag-
nant region.
Applying the Laplace transform to Eqs. (5) and (6),

the transfer function of this model, F2�s�, can be estab-
lished as:

F2�s�
2b1=2exp

�
1

2

�
PeL ÿ b1=2

��
ÿ
PeL � b1=2

�
ÿ
ÿ
PeL ÿ b1=2

�
exp

�
ÿ b1=2

	 �7�

with b � Pe4L�4sgPeLts; g � f� G�1ÿf�
ts�1ÿf�s�G

; and G � KL
�W
:

This model involves four parameters, ts, G, f and

PeL, the optimisation of which is very di�cult without
a good initial estimate. As in the dispersed plug ¯ow
model, ts is initialised using the ®rst moment of the

residence time distribution. G and f are ®rst estimated
assuming that plug ¯ow occurs in the non-stagnant
zone. With this assumption, F2�s� reduces to:

F3�s� � exp

�
ÿ s

�
f� Gÿ f

tss�1ÿ f� � G

�
ts

�
�8�

The values of G, f and ts obtained using F3�s� are then
®xed in the transfer function (7) in order to obtain a
®rst value of PeL: Finally, the four parameters of the
plug ¯ow with axial dispersion model exchanging mass

with a stagnant zone are globally optimised from the
previous estimation. This procedure has been shown to
be robust by Legentilhomme et al. [13].

3.2. Experimental results

The dispersed plug ¯ow model is not suitable for

simulating the dispersion process, especially for small
Reynolds numbers for which RMS is often larger than
10%. The second model, associating a dispersed plug

¯ow exchanging mass with a dead zone, appears bet-
ter: the RMS between the experimental and calculated

outlet signals remains less than 10% over the whole
Reynolds numbers range.
An example of curve-®tting is given in Fig. 3 for a

33-bend con®guration system �Re � 448). The RMS is
equal to 21.8% if the plug ¯ow with axial dispersion
model is used (Fig. 3(a)), whereas it is reduced to 5%

Fig. 3. An example of curve-®tting in time domain using the

two models (33-bend chaotic system, Re � 448): (a) plug ¯ow

model with axial dispersion; (b) dispersed plug ¯ow model

exchanging mass with a stagnant zone.

C. Castelain et al. / Int. J. Heat Mass Transfer 43 (2000) 3687±37003694



with the dispersed plug ¯ow model exchanging mass
with a stagnant zone (Fig. 3(b)).

Fig. 4 depicts the variation of the PeÂ clet number
based on the tube diameter as a function of the Rey-
nolds number for several chaotic con®gurations. The

PeÂ clet number increases with an increase in Reynolds
number, whatever the number of bends constituting
the system. When the Reynolds number increases, the

decrease in axial dispersion is due to the secondary
¯ow. In curved pipes, the secondary ¯ow due to the
appearance of Dean vortices [9,10] is expected to

increase transverse mixing and to ¯atten the concen-
tration distribution in the cross-section of the device.
Nunge et al. [31] have observed, for laminar ¯ow in a
helically coiled system, that when the Reynolds num-

ber increases, the e�ective axial dispersion decreases
due to the action of the secondary ¯ow. In addition, in
chaotic twisted pipe ¯ow, the reduction of the RTD is

more pronounced because of another mechanism: the
generation of chaotic trajectories in the ¯ow. This
phenomenon also accounts for an increase in trans-

verse dispersion [32] because, before leaving the sys-
tem, ¯uid elements can visit many transverse positions
and thus move at di�erent velocities.

Fig. 5 shows the variation of the volume fraction
subjected to plug ¯ow with axial dispersion as a func-
tion of the Reynolds number for di�erent con®gur-
ations tested. Globally, the ¯owing fraction, f,

increases with Reynolds number, whatever the number
of bends, to reach a maximum value varying from 0.9
to 1. For Reynolds numbers between 50 and 200, the

¯owing fraction increases with the number of bends
involved in the chaotic twisted pipe ¯ow. The nature

of the ¯ow regime depends on the angular extension of
the bends, the angle between the plane of curvature of
two successive bends and the Reynolds number [28].

For instance, when the number of bends or the Rey-
nolds number is small, some streamlines are con®ned
in streamtubes where the ¯ow remains regular, whereas

other trajectories become chaotic, inducing what is
usually called a `mixed regime'. If all trajectories
become non-integrable, the ¯ow is fully chaotic. This

suggests that the ¯ow regime is of transitional type
and can thus be classi®ed between purely regular and
chaotic ¯ows. Such an intermediate regime could con-
tain limited regions where trajectories remain regular

and other zones where trajectories become more and
more complex. In this case, the stagnant zones of the
model described by Eqs. (5) and (6) should be associ-

ated with the ¯uid particles located close to the tube
wall, where the axial velocity is very low. They remain
trapped near the tube wall and thus should need a

longer time to reach the exit of the geometry. A radial
transport mechanism inherent to molecular di�usion
allows these particles to move towards the central core

of the tube, which can be primarily characterised by
essentially plug ¯ow. When the tube length is
increased, the chaotic zones begin to extend towards
the regions close to the wall, allowing more trapped

particles to escape from the stagnant zone and move
towards the tube central core. In fact, the radial trans-
port mechanism is much more e�cient in the chaotic

zones than in the regular ones, where only molecular

Fig. 5. Evolution of the ¯owing fraction versus Reynolds

number for di�erent con®gurations of the chaotic system.

Dispersed plug ¯ow model exchanging mass with a stagnant

zone.

Fig. 4. PeÂ clet number based on the diameter versus Reynolds

number for di�erent con®gurations of the chaotic system.

Dispersed plug ¯ow model exchanging mass with a stagnant

zone.
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di�usion takes place. This mechanism of development
for chaotic trajectories may explain why the stagnant

zone is reduced when the number of bends is
increased. It should be noted that this mechanism has
already been observed in previous studies [28,32].

The dispersion coe�cient is not a su�cient criterion
for characterising and comparing mixing device per-
formance. In fact, this parameter characterises mixing

performance globally without taking into account any
eventual increase in pressure drop, which appears to
be an important parameter from an energetic point of

view. In order to further characterise the e�ciency of a
given device, we suggest the use of another criterion
that takes into account the pressure drop via a friction
factor:

Cr � n
DaxCf

�9�

For the same pressure drop, the criterion increases
when the axial dispersion decreases; for the same axial
dispersion, the criterion increases when the pressure
drop decreases. Fig. 6 presents the evolution of this

criterion for two chaotic systems consisting of 3- and
33-bends for di�erent Reynolds numbers. In the 3- or
33-bend chaotic con®guration, the criterion decreases

with the Reynolds number. The pressure drop induced

by the increase of the ¯ow rate is more important than
the decrease in axial dispersion. The criterion was cal-

culated for a straight tube and a helical device by
using data from Sakra et al. [33] and Mishra and
Gupta [34], and for an annular swirling decaying ¯ow

induced by means of a tangential inlet [12,35]. The
axial dispersion coe�cient was obtained by using the
axial dispersion model. The criterion is more important

in the chaotic con®guration.

4. Numerical simulation of the RTD

4.1. Evaluation of the RTD

The present numerical simulation of the chaotic
twisted pipe ¯ow is based on a simpli®ed model devel-
oped by Jones et al. [2] that uses the approximate vel-

ocity ®elds for ¯ow in a curved pipe of circular cross-
section previously developed by Dean [9,10]. The ¯ow
®eld is assumed to be steady, incompressible and fully

developed in the whole geometry. The equations of
motion are written in the two toroidal local coordinate
systems �x, y, y� and �r, j, y� shown in Fig. 7. The re-

lation between the two systems is:

x � r sin�j�

y � r cos�j� �10�

Non-dimensionalising all lengths by r, the axial vel-
ocity, w, by the average axial velocity, �W, and the
stream function, c, by the kinematic viscosity, n, leads
to the following dimensionless equations for w and the
secondary ¯ow stream function, c [36]:

r 2w � 1

r

�
@c
@ r

@w

@j
ÿ @c
@j

@w

@ r

�
ÿ A

Fig. 7. Local coordinate system used for the numerical simu-

lation.

Fig. 6. Evolution of the mixing criterion of the chaotic system

versus Reynolds number. Comparison with other works.
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r4c � 1

r

�
@c
@r

@

@j
ÿ @c
@j

@

@r

�
r 2c

� 2Dn 2w

�
sin j
r

@w

@j
ÿ cosj

@w

@r

�
�11�

Here A is a dimensionless number expressing the over-
all pressure gradient driving the ¯ow:

A � ÿ R 2

m �W

@P

Rc@y
�12�

and Dn is the Dean number given by

Dn �
�WR

n

�������
D

Rc

r
�13�

For small values of the Dean number up to values of

the order of 30, Dean [9,10] solved Eq. (11) using a
perturbation method. The perturbation solution is
obtained by expanding w and y in a power series of
2Dn 2: In the local coordinate system �x, y, y), the sec-

ondary velocities u and v can be written as:

u � @c
@y

v � ÿ@c
@x

�14�

Limiting the power series to the ®rst order of 2Dn 2

and considering the pressure gradient to remain the
same as that in a straight pipe in laminar ¯ow regime
leads to:

@P

Rc@y
� @P

@z
� ÿ8m

�W

R 2
�15�

By solving Eq. (11), Dean [9,10] showed that the sec-
ondary velocities are given by the following two

equations:

u � A 2Dn 2

4468

ÿ
1ÿ x 2 ÿ y 2

�ÿ
4ÿ 5x 2 ÿ 23y 2 � 8x 2y 2

� x 4 � 7y4
�

v � A 2Dn 2

1152

ÿ
1ÿ x 2 ÿ y 2

�
xy
ÿ
3ÿ x 2 ÿ y 2

�
�16�

Thus, in the local coordinate system �x, y, y), the axial
velocity component is given by Refs. [9,10]:

w � Rc@y
@ t
� 2Dn 2

Re

ÿ
1ÿ x 2 ÿ y 2

�
�17�

Since the ¯ow is steady, the system �u, v, w� � � dx
dt ,

dy
dt ,

dz
dt � is autonomous and the independent variable can be

changed from time t to angular position y by dividing
Eq. (16) by Eq. (17), [2]. This simpli®cation reduces
the dynamical system to two equations:

dx

dy
� Re

144

ÿ
4ÿ 5x 2 ÿ 23y 2 � 8x 2y 2 � x 4 � 7y4

�
dy

dy
� Re

24
xy
ÿ
3ÿ x 2 ÿ y 2

�
�18�

The system of two di�erential Eq. (18) de®nes the
mapping of ¯uid particles in the cross-sectional plane
at a given y value. In a helically coiled con®guration

formed by the succession of n 908 bends, particle tra-
jectories are obtained by integration of system (18) fol-
lowing y between 0 and the ®nal angular coordinate.

In that procedure, torsion e�ects are neglected. For
the chaotic case, particle trajectories are obtained by
integration of system (18) between the beginning and

the end of each bend. At the end of each bend, the
coordinate system is changed. If the angle between the
curvature plane of two successive bends is a, the new

coordinate system is obtained by a rotation ÿa of the
previous coordinate system corresponding to the pre-
ceding elbow. We assume that the ¯ow becomes fully
developed as soon as it enters the bend, and that, as

the ¯ow leaves one bend to enter the next, the re-
adjustment from one secondary ¯ow pattern to
another is immediate. The system (18) is numerically

integrated using a fourth-order Runge±Kutta method.
All the calculations were performed in double pre-
cision.

The RTD of a passive tracer is obtained numerically
by injecting a series of Dirac functions of passive tra-
cer particles uniformly distributed within the cross-sec-
tion at the entrance of the system. The amplitude of

each successive Dirac function is chosen so as to
reconstruct the shape of the experimental injection at
the entrance. However, it should be noted that the

results are independent of the shape of the injection
curve. This way of reconstructing the injection curve is
chosen to avoid modifying the transfer function in the

numerical study. Thus, the inlet numerical curve obeys
a parabolic equation. The total number of particles is
250,000, whatever the Reynolds number. The number

of particles in each elementary Dirac injection corre-
sponds to the injected tracer concentration during each
pulse duration. Thanks to the simple ¯ow model pre-
sented above, we can calculate the trajectories of the

¯uid particles, in order to obtain their residence time
and the cross-sectional position of each injected par-
ticle. The entrance curve shape does not in¯uence the

RTD, which depends only on the ¯ow ®eld. Thus we
can establish an outlet histogram built using the num-
ber of particles reaching the exit of the system in a

given residence time interval.

4.2. Results

Computations were performed for Reynolds num-
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bers between 10 and 100, in helically coiled and
chaotic systems made of 3, 6, 9 and 33 bends, and the

results were analysed with the di�erent models
described above. As was true for the experimental
data, the RMS between the calculated and the numeri-

cally simulated outlet curves using the plug ¯ow with
axial dispersion model is rather high, especially for
smaller values of the Reynolds number and for systems

having a large number of bends. The main di�culty
arises from the tail of the response curve coming from
slower particles that take more time to leave the sys-

tem. For small Reynolds numbers, ¯uid particles close
to the walls have di�culty in reaching the exit of the
system. The dispersed plug ¯ow model does not cor-
rectly describe the spread of the RTD. In order to

overcome this problem, the dispersed plug ¯ow model
exchanging mass with a stagnant zone was used for all
the con®gurations investigated numerically. Fig. 8

compares the PeÂ clet number in helically coiled and
chaotic systems for the 3- and 33-bend con®gurations.
Globally, the PeÂ clet number is larger in the chaotic

system (a large PeÂ clet number indicates a small axial
dispersion). A previous study has already pointed out
that the axial dispersion was lower in the chaotic sys-

tem than in the helically coiled one for large Reynolds
numbers �Re > 800, [7]). The same tendency is
observed here for smaller Reynolds numbers. The evol-
ution of the ¯owing fraction is presented in Figs. 9

and 10, respectively, for the helically coiled and chaotic
twisted pipe systems for di�erent Reynolds numbers.
Flowing fraction values are distributed around a mean

value of 0.65 for the helically coiled system. By the hy-

Fig. 9. Evolution of the ¯owing fraction versus Reynolds

number for di�erent con®gurations of the helically coiled sys-

tem. Numerical results.

Fig. 10. Evolution of the ¯owing fraction versus Reynolds

number for di�erent con®gurations of the chaotic system. Nu-

merical results.

Fig. 8. Evolution of the PeÂ clet number based on the diameter

versus Reynolds number for the helically coiled and chaotic

systems. Numerical results.
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pothesis of the simulation, Dean vortices are estab-
lished as soon as the ¯uid enters each bend, and a con-

stant value of the ¯owing fraction is stabilized after six
bends. Furthermore, the ¯owing fraction stability with
Reynolds number can also be attributed to the fact
that the Dean vortices have the same size, whatever

the Reynolds number. Unlike the helically coiled geo-
metry, the ¯owing fraction in the chaotic system is not
constant (Fig. 10): variations are observed as a func-

tion both of the number of bends and of Reynolds
number. Globally, the ¯owing fraction increases with
increasing Reynolds number, whatever the number of

bends involved in the chaotic mixer. This evolution is
mainly due to the initiation of a mixed regime, as dis-
cussed in Section 3 above.
Fig. 11 compares the experimental and numerical

axial dispersion coe�cients in chaotic systems in terms
of the ratio Dax=n versus Reynolds number. The nu-
merical results are in good agreement with experimen-

tal data in the common range of Reynolds numbers
�20RReR100). In the two cases, RTD was modelled
using the dispersed plug ¯ow model exchanging mass

with a stagnant zone.

5. Conclusions and discussion

The experimental evaluation of RTD in a spatially

chaotic system associated with the use of a dispersed
plug ¯ow exchanging mass with a stagnant zone has
allowed the determination of a global axial dispersion

coe�cient. For small Reynolds numbers, the tails
appearing on the experimental RTD are correctly pre-
dicted in this model.

When the Reynolds number is increased, the axial

dispersion coe�cient decreases, whatever the number

of bends in the system. In chaotic twisted pipe

¯ow, the reduction in the RTD is due to the

appearance of the secondary ¯ow and to the in-

itiation of chaotic trajectories in the ¯ow. This

phenomenon contributes to an increase in transverse

dispersion.

The ¯owing fraction increases with Reynolds num-

ber, whatever the number of bends in the chaotic

mixer, and reaches a maximum value varying from 0.9

to 1. For Reynolds numbers between 50 and 200, the

¯owing fraction increases with increasing the number

of bends. When the number of bends or the Reynolds

number is small, some streamlines are con®ned in

streamtubes where the ¯ow remains regular, whereas

other trajectories become chaotic, creating a mixed

¯ow regime.

A dispersion model was developed that takes into

account this particular regime. The presence of chaotic

and regular zones suggests modelling the ¯ow with two

parallel zones:

. a ®rst zone modelled by a perfect mixed tank (this

zone can be assimilated to the chaotic regions),

. a second part modelled by a plug ¯ow with axial

dispersion (this zone can be assimilated to the

regular part of the ¯ow).

The size of these zones varies along the mixer. At the

inlet, the regular zone is predominant, but after a few

bends, the fully developed chaotic zone begins to cover

the main part of the ¯ow cross-section.

To be valid, the model must take into account the

long tailed curves arising from the competition

between the two parallel ¯ows. Fluid particles located

in the chaotic regions should take longer to ¯ow

through the geometry than particles ¯owing in the

regular zones. However, this model was unsatisfactory

in that it led to RMS values greater than 20%

between the experimental and calculated response

concentration signals. The plug ¯ow model with axial

dispersion exchanging mass with a dead zone was

found to be the more appropriate model. A mixing

e�ciency criterion was suggested to take into account

both mixing quality and the associated pressure drop.

Residence time distributions were also obtained nu-

merically using a ¯ow model based on Dean's pertur-

bation solutions of the Navier±Stokes equations in

helically coiled and chaotic systems. The average PeÂ c-

let number obtained in the chaotic con®guration is

higher than that in the helically coiled con®guration.

The evolution of the ¯owing fraction has revealed

di�erent behaviours in the two kinds of ¯ow. Nu-

merical results are in good agreement with corre-

sponding experiments.

Fig. 11. Comparison of the numerical and experimental axial

dispersion, Dax=n, vs. Re.
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